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ABSTRACT. The initial value problem for a 4-parameter family of nonlocal and nonlinear evo- lution
equations with data in a space of analytic functions is solved by using a power series method in
abstract Banach spaces. In addition to determining the power series expansion of the solution, this
method also provides an estimate of the analytic lifespan expressed in terms of the norm of the initial
data, thus establishing an abstract Cauchy-Kovalevsky type theorem for these equations.

l. INTRODUCTION AND RESULTS

In this work we prove an abstract Cauchy-Kovalevsky theorem for the following 4-parameter
family of Camassa-Holm type equations

b . ;
Yy o+ ukq — auk‘zq,a +g (1- Qz]‘l P ot s cuk‘lu:, —a(k —2) uk‘zf.;:

+(1-0%9)" k(k+2)-8a-b-c(k+1) v’ -3alk-2)uvu,. =0  (1.1)

which was introduced in [HMal] and is referred there as the k-abc-equation. The three parameters
a, b and c range over the real numbers while k is a positive integer, whose value depends on a.
If a /= 0 thekh = 2 and the presence of the term au*—zu;, makes k-abc-equation a nonlocal and
nonlinear equation which is not quasilinear. For k= 2 and c = (6 — 6a — b)/2, we obtain the ab-
family of equations (ab-equation) with cubic nonlinearities
b 6—6a—b

u + uu,—au® +90 (1-9%)" _3u3 A ud®, +(1-0%)
which was also introduced in [HMa1l] and which contains two well-known integrable equations
with cubic nonlinearities. In fact, for a = 1/3 and b = 2 the ab-equation gives the Fokas-Olver-

Rosenau-Qiao (FORQ) equation (also known as the modified Camassa-Holm equation)

; +b—
1 Mu3x=ﬂ, (1.2)

2 1
Oeu + u'd,u — L(0,w)’ + 9,(1 - 87)~" _3u3 +u(d,w)} +(1-07)" —3{6 WP =0, (1.3)

which was derived in different ways by Fokas [F], Olver and Rosenau [OR] and Qiao [Q], and
also appeared in a work by Fuchssteiner [Fu]. For g = 0 and b = 3 the ab-equation gives the
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Novikowv equation (NE)
3 1
U+ U, +0,(1 - 82" P+ 2—uu3 +(1-90%)-" —Zui =0, (1.4)

which was derived by V. Novikov in [N1], where he provides a classification of all integrable
CH-type equations with quadratic and cubic nonlinearities.

Finally, for @ = 0 and ¢ = (3k — b)/2 the k-abc-equation makes sense for all k = 1 and gives the
following generalized Camassa-Holm equation (g-kbCH)

_ (k — 1)(b — k)
u +uu +(1—98%)"e b ypen =D e o, (1—a*)—" k=10b=K) k2,
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which is a quasilinear equation with (k + 1) order nonlinearities and which was studied in [HH2]
and [GH]. When k =1 the g-kbCH equation gives the well-known b-equation

m + um + buxm =0, MmM=U-— U (1.6)

o w -
evolution  convection stretching

having quadratic nonlinearities. In this local form it was introduced by Holm and Staley
[H51, HS2] and it expresses a balance between evolution, convection and stretching. The b-
equation (1.6) contains two integrable members, namely the Camassa-Holm (CH) equation that
corresponds to b = 2 and the Degasperis-Procesi (DP) equation that corresponds to b = 3.
Mikhailov and Novikov [MN] proved that there are no other integrable members of the b-equation.
Furthermore, V. Novikov [N2] recently proved that the only other integrable member of the g-
kbCH equation (1.5) apart from CH and DP is the NE (1.4). To summarize, thus far it is known
that the k-abc-equation (1.1) contains four integrable equations, CH, DP, FORQ and NE. How-
ever, the existence of other integrable members of the k-abc-equation remains an open question.
In fact, integrability theory provides one of the motivations for studying such nonlocal equations.

Another motivation for studying equations like k-abc-equation is the quest for equations capturing
wave breaking and peaking, which goes back to Whitham, who articulates it in his 1974 book [W]
(p. 477) as follows: “Although both breaking and peaking, as well as criteria for the occurrence of
each, are without doubt contained in the equations of the exact potential theory, it is intriguing
to know what kind of simpler mathematical equation could include all these phenomena.” It is
remarkable that the k-abc-equation has peakon traveling wave solutions for all values of the four
parameters k, a, b and c. These, including multipeakons, have been derived in [HMal]. The
peakon solutions in the non-periodic case can be written in the following form

u(x, t) = ye‘l”'(l_"wrl, Y ER. (1.7)

When a = 0 and ¢ = (3k — b)/2, which is the case of the generalized Camassa-Holm equation
(1.5), these are of the form u(x, t) = c* e?l and were derived in [GH], together with
the corresponding multipeakon on the line and the circle. In the case k = 1, which is the b-
equation, peakon solutions were derived by Holm and Staley [HS1, HS52], who made the important
observation that the b-equation has peakon (and multipeakon) traveling wave solutions for all
values of b. Of course, it is Camassa and Holm [CH] who observed first that the celebrated CH
equation has the peakon (weak) solutions u(x, t) = ce— "=l

The initial value problem of the k-abc-equation in Sobolev spaces was studied in [HMa2]. More
precisely, there the following well-posedness result was obtained. If a, b, ¢ € R with @ /=0 and

k € N with k = 2, then the Cauchy problem for the k-abc-equation (1.1) with initial data
u(x,0)=ug(x) EH’, xER or T, s > E,Ehas a unique solution u € C{[0,T]; H'). Furthermore,

the lifespan T satisfies the estimate .

— 1.8
g, (1.8)

Also, in [HMa2] continuity properties of the data-to-solution map are investigated. The case
a =0 and c = (6- 6a-b)/2 yields the g-kbCH equation, whose well-posedness in Sobolev spaces
H* for all s > 3Ewas proved in [HH2]. The Cauchy problem for the integrable members CH,
DP, FORQ and NE was studied earlier by many authors. For some results on well-posedness,
traveling wave solutions, and other analytic properties of these and related equations we refer
the reader to the following works and the references therein [BHP2], [BSS], [BC], [CHT], [CK],
[CL], [CM], [CS], [DP], [EY], [FF], [HH1], [HK], [HMPZ], [KL], [LO], [LS], [R], [B], [CKSTT],

[KPV], [GLOQ], [HHG], [HGH], [HLS], [KT], [L], and [Ti].

In this work we study the initial value problem for k-abc-equation when the initial data belong
to spaces of analytic functions, on both the line and the circle. More precisely, these spaces are
defined as follows. For s = 0 and & >0, on the line thfse spaces are defined by

G

G*“(R) = {¢ € '(R) : [|9ll5e ) = (&) T IISENdE < oo}, (1.9)
R
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where { §) {1+£Q}m. On the circle the corresponding spaces are
= =

N
GH(T)={@ € L(T): ||®]|2ery = (k) P [ (k)|* < o0}, (1.10)
keZ

where { k) = (1+ k)%, Here, when a result holds for both on the line and the circle then we
use the notation || - || for the norm and G** for the space in both cases. We observe that a
function ¢ in G** has an analytic extension to a symmetric strip around the real axis with width
& (see Lemma 2). This & is called the radius of analyticity of ¢. Since in the next Theorem we
will assume that the initial data uy is in G"*** we would like to point out that in the periodic
case an analytic function (i.e. an element of C*(T)) belongs to a Gﬁ"-s[T], for some &p > 0 and
any s = 0. More precisely we have the following result, whose proof is easy and will be omitted.

Lemma 1. If u, € C*(T), there exists &, > 0 such that u, € G°3(T) for any s = 0.

Next, we state our main result, which is motivated by [BHP1] and [BHP2]. For the sake of
5 5 s i sl = 1,542
simplicity we shall assume that our initial data up belong in G .

Theorem 1. let 5 > l.?’f ug € ¥ on the circle or the line, then there exists a positive time

T, which depends on the initial data uy and s, such that for every & € (0, 1), the Cauchy problem
for the k-abc-equation (1.1) with initial condition u(x, 0) = uy(x) has a unique solution u which
is a holomorphic function in D(0,T (1 - &)) valued in G™"%. Furthermore, the analytic lifespan

T satisfies the estimate
1

T W (1.11)

0lly, 542
A more precise statement of estimate (1.11) is provided in Section 4 (see (4.13)). For the Camassa-
Holm equation on the circle, a result similar to Theorem 1 but without an analytic lifespan
estimate like (1.11) was proved in [HM]. Furthermore, for CH, DP, NE and FORQ Theorem
1 was proved in [BHP2] using a different approach based on a contraction type argument in
an appropriate space which is build from a scale of Banach spaces. Here we are using a power
series method, which for the quasilinear g-kbCH equation was presented in [BHP1). The novelty
of this work is that it provides a comprehensive treatment of a large family of Camassa-Holm
type equations whose local part includes non-quasilinear terms like u*‘zf. Furthermore, it
makes a complete presentation of the autonomous Ovsyannikov theorem using the power series
method, on which the proof of Theorem 1 is based. We conclude, by mentioning that there are
many versions of the abstract Cauchy-Kovalevsky theorem proved in a variety of ways. Many of
these works are motivated by water wave models and the Euler equations. For more information
about these we refer the reader to Baouendi and Goulaouic [BG1], [BG2], Ovsyannikov [01], [02],
Treves [Trel], [Tre2], Nirenberg [Nr], Nishida [Ns], Caflisch [C], Safonov [S], and the references
therein.

The paper is organized as follows. In Section 2 we describe the spaces used and prove the needed
properties. In Section 3, following the work of Treves, we presents the proof of the autonomous
Ovsyannikov theorem which solves an abstract Cauchy problem by the power series method.
Finally, in Section 4 we apply the power series method to the k-abc-equation and derive the
estimates needed for this method.

2. G”° SPACES AND RESULTS

We begin with the properties of the G** and the estimates needed to prove our main result. The
next two lemmas provide a better understanding of the spaces G* and their properties. One
can easily prove these results.

Lemma 2. let ¢p € G*°. Then, ¢ has an analytic extension to a symmetric strip around the
real axis of width &, for s = 0 in the periodic case and 5 > % in the non-periodic case.

Lemma 3. I[f0<& <8=1,s520and ¢p € G*° on the circle or the line, then
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-1
Nowblls.s = z—srIBlls (2.1)
10l = 1Bl ls.ex (2.2)
12— 27 bllssia = 18110 (2.3)
12— 02) 2 bl = [14b1 1 (2.4)
10,1~ 02) 2 blls. = 1Bl (2.5)

Furthermore, we shall need to prove an algebra property for these spaces, which is the main
result in the following lemma.

Lemma 4. For ¢ € G° on the circle or the line the following properties hold true:

1) Ifo<&<8and s=0, then ||- |15 =||-113.; i.e. G*° c— G%s,
2)If0<si<sand & >0, then ||- ]2 - = [|-||? ; i.e. G*° «— G
8,5 8,5

3) For s >1/2 and ¢, € G>° we have

Hedlss = csll@llssl1Wllss (2.6)

feo
0

(&
23

=
where ¢, = 2(1+225)" 2,

non-periodic case.

in the periodic case and c. =  2(1 + 225) dé in the

1
{ k)
28

Proof of Lemma 4. We will provide the proof in the periodic case. The proof in the non-
periodic case is similar. Properties (1) and (2) follow directly from the definition of the spaces
G°* and the corresponding norms. Therefore, we restrict our attention to the proof of the algebra
property (3), which reads as follows

=
NowlB. = (k) ZeTGUK)I = |I( k) "M 1EB(KYE,
kEZ
2 2 2

=
(k) %™ 1 d(n)dk — )iz < cl1dlls. 1015 (2.7)

" neZ .
Defining fand g by f (kI'= { k) e’ *Igp(k) and g(k) = { k) *’“IY(k), whe see that the algebra
property (2.7) is equivalent to
- e—ﬁlnlf(n) e—é|k—n|g_(k —n).2
{ “ra = SRl 2 (2.8)
n { k-
\ s n\ 5
Furthermore, using the triangle inequality |k| < |n| + |k — n| we notice that in order to prove
(2.8) it suffices to show that

kY k|
e

neZ

== f(n) ok — 2
Ak _ = 2 2. .
n;f 2) (M (k- ro <IIAl [161] (2.9)
- n\ s s Bz B(Z)
nEeZ

Using the Cauchy-Schwarz inequality we have

= _ == =2
Slmgkon E L ek - P
(n)*{k- (n) ®(k- '
neZ p neZ N\ 25 neZ
which gives the following bound for the left-hand side of (2.9)
<= fn) otk — s 1 = p V2 2
--{ k) (ms({k=nys = (k) 25( K I£(n)Ple(k — n)| -
H] L2 neZ { n} { - nez
- ny 25 12(Z)
neZ 2(Z)
- = 1/2 2
ssup (k) Z  — 1 . = fn)? ﬁlk n)? . (2.10)
keZ nez Ny B k- nEZl | — LRZ)
n) 2s
Now, we need the following estimate, whose proof is given after the one of algebra property.
Lemma 5. For I >1/2, a€EZ and c; = 2(1+ 22")’_‘?;0 : 1 we have
Z 1 3 281\
LT

kEZ( Ky 2 k—ay 2 = (ay 2" (2.11)
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(

In the non-periodic case, for a ER and ¢, = 2(1 +2%) Jfrzo —L_d¢ we have
f (9
1 ¢
dx= — 2.12
2 (0 A x-a) 7= Ta 212
y 2

Since 5 > 1/2, combining (2.10) and (2.11) and interchanging the order of summations (Fubini’'s
theorem) we get

s = fin) ok —
D (k= @
. 2 e 2 2 _ 2 2 > 2 2 2 2
= € LA(n) otk — n)|? = Cs”g”:z(z) A = Cs|lf||,rz{z)||§||.r2(z]»
neZ keZ neZ

which completes the proof of Lemma 4. Q

Proof of Lemma 5. If g = 0 then it is easy to see that inequality (2.11) holds true. If g is
a negative integer then making the change of variables m = k — a the estimate is reduced to
the case where @ is replaced with —a. Thus, it suffices prove inequality (2.11) only when a is a
positive integer. For this we shall use the notation [x], which stands for the biggest integer that
is less than or equal to x. Thus, x — 1 < [x] = x. Now, we begin by decomposing our sum as

follows
==
s 1 . 1
- 2/ - } 3/ _ 21
ez g}kéi (k- —co<k=0{ k) ¥{ k —a)
=
. 1 " 1
k¢l a 2! 20§ _ oy 21
1sk::[a/21v<, 'R (/21 12kt $ K 20Kk —a)
= 1
RN T ET
al+l=k< =
a0
By setting & = —k we obtain a)
o0
s = = 1 1 > 1
eezo LRV k== (@ g (B

2
By noticing thatin S we have 1+ (k — aYz1+a’/4="" > 1+a® " e obtain
2

5 o P 2
2 = 1
25a (0
We also notice that in 53 v2r k=1 g and k —a = 0 and therefore we
obtain we have 1+ k% = 1+ a’/a > '
2/ 2/ = 21 @@
L2 ¥ 2 L 2 =
= k— “a S (8"
Sf, la/2)+12k=2[a] f,\ 2 S, 21 k-a=0 .y 2 v 90y
In S, we have 1+ k* > 1 +a® and therefore if we set m=k —a
oo
=
.S.q = .
(a _(m)
\ 2 2

Adding the estimates obtained above for the sums 5;, 5;, 53 and 5, gives inequality (2.11). In
order to prove (2.12) one has just to replace the sums with integrals. This completes the proof

of Lemma 5. Q
3. THE POWER SERIES METHOD

Here, following Treves [Trel], [Tre2], we prove the autonomous Ovsyannikov theorem using the

power series method, which consists of finding a solution for the Cauchy problem
du
i F(u), wu(0)=ug (3.1)
given by a formal power series

m

=
u(t) = umt , (3.2)

m=0
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and estimating the coefficients u,, in order to prove the convergence of the above series. We
begin with the following important definition. Let {Xs}o<s=1 be a decreasing scale of Banach

spaces and ug € X3 be given. Also, let X = Xs.
[

Definition 1. We say that F : X; — X, is Ovsyannikov analytic at u, if there exist positive
constants R, A and G such that for all k € Z, and 0 < &' < § <1 we have

. A C'k!
HD*F(u)(vi,..., vi)lls = P _%uul”g,., vills (3.3)
forall ue {u € X; : |lu—uglls = R} and (vy,...,w) E X:i X5 % =% X,, where D*F is the
A X

« i

Frechet derivative of F of order k.

Here, we shall prove the following important result.

Theorem 2. If ug € X1 and F is Ovsyannikov analytic as above, then there exists T > 0 such
that the Cauchy problem (3.1) has a unigue solution which, for every & € (0, 1) is a holomorphic
function in D(0,T(1 — &)) valued in Xs satisfying

sup  llu(t) —wlls <R, 0<é&<1. (3.4)
|t]<T(1-8)
Moreover, the lifespan T is given by 1
T= 52>
2€?AC,

where the constants R, A and C, come from the Definition 1.

From the definition of Ovsyannikov analyticity one can easily prove the following result.

Proposition 1. If F is Ovsyannikov analytic at us € X, then there is R > 0 such that, given
any pair (6, &), 0< & < 8 <1 and any u € Bsluo; R) the Taylor series

l kF{ 0}( _ 1] _ 'D}
k.P ullu—u,...,u—u

k=0 ‘.k.r

converges absolutely to F(u) in Xg.

Proof of Theorem 2. Let 0 < & < & < 1. Since up € X; and F is Ovsyannikov it follows from
Proposition 1 that

4
Flu) = l,cp"F(u“') (w—u .. u—u’) inX"
k=0 ) _t - §

Since we want to have ;1,” = F(u), we must have

m
uy + (m + L)umaat

=FE = m
=F(u)+ TODF(uu ,..u )
0 k! 1] ma Mk
m=1 k=1 mi+---+my=m
my=1

We then conclude that the coefficients of the series are given recursively by

uy = F[UU} {35)
and .
T = D'F(up)
(m+Lupser = Kl (Umi,.., Um )y mz=1. (3.6)
k=1 my+=+me=m
my=1

We shall use the following lemma.
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Lemma 6. Forall k=1,2,..., we have

= _ 1 1

M+=+me=m
my=1

Proof. We prove the lemma by induction on k. For k = 1 the inequality is clear:

20
= 1 1 1 2
2~ 2 = 2 T
maeeamp—m M- M m
my=1
For k = 2 we can write
m—k+1
> 1 _ == 1 == 1
= - e
m...m 7 m...m
ma+e-+m=m 1 k =1 Mty 1=m—| 1 k-1

my=1

Hence the induction hypothesis gives

>3 1 e K 1
2 2 = -
m ...m 3 12(m — )2
[ —— 1 k I=1 ( )
myi=1
We now see that
m=1 m—k+1 2 m=1 2
L R e
g T ia =D =1 m—1
= 2 = l + 1 =4 = l —2?1:2
= > ~ 2 = =
e P m=1) g 2 3
Therefore
> 1 22 k1
—_— =
m...m ~ 3 ,
O 1 k
my=1
which proves the lemma.Q
We claim that
Leed
||um||¢gm2 :S , forallm=1,2,..., (3.7)

where u = # and B = 2e’AC,. To prove this fact, we proceed by induction on m. For
m =1, we know that u; = F(up). Then it follows from (3.3) that

A HB
udlls = [IF(uadls = 1->1-5
which is true since uB = ;E—;,A = A, For m = 2, we select v =%1 > 0. We notice that
O<bd<bd+v<land
1—(&5+v) m(l - &)
Thus, by using (3.6), the induction hypothesis and (3.8) we obtain
= = 1
(m + 1)||Um*1 | |¢' = ACku:IIUmlllaw s ||umk ||r5+v
k=1 mMil+-=-+mMg=m
a1 = = ACkLE g ™ 1
1-6 m—m T-3 1+ 5
k=1 mate-tmi=m 1 k
We then have
I 0 ACoeuB™ Z 2Cum® ! ACoeus™ FT 1
Umvi]]s 2 _ m+1 = 2 _ m+1
mA(1- &)t 3 mA1- &)™ 2
since u = ﬁ. Hence,
2AC,euB™ 2ACoe’uB™ u B ™
Humells =

mz(l _ 5)m+1 =

mMm+12(1-86)"T (m+1)? 1-6
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since B = 2AC,e”. The proof of the claim is complete.

Therefore, for T = m = B! and for |t| = T(1-8) the series u,t" converges absolutely
m=0

in X; for the unique solution to our Cauchy problem. Q
4. THE k-abc-EqQUATION

In this section we apply the power series method for the k-abc-equation. For this we rewrite this
equation in the following nonlocal form:

b+ 1
du = Flu)=—-(1-03)""0, P 1uk+1 + (¢ — KU s — U + 300 i,
— (1-8))" [klk+2)-9a-b-clk+1)]u"*u’ - 3alk - 2" u. (4.1)

We shall prove that there exist positive constants A, C; such that

) Ac !
1D/ F(ug)va, - .., vi)llss+2 = 55 Vallssez - 1V llsse s (4.2)

8,542

for all (v4,..., v) EG and j=0,1,...,k +1 since for j = k + 2 we have

"DIF(HG)(V‘l: RN Vj}“.s',s-fZ =0.

For simplicity, we shall provide estimate (4.2) only for the term

Fi(u) = (1-07)" 3alk - 2)u" vy, ,

since the other terms can be estimated analogously. By using the following formula for the
Frechet derivative of F of orderj, 1 =j < k+ 1, at the point up,

: d d
DF(ug)(Vy,eee, v} = 7~ == = Flug+ V) .
dt; dr n="-=1;=0

we obtain, for v, € G**, 1=1,..., j,

O (0" ) S vav) =

_{ﬂ}!_uk_a_;(d iy }3{62[; )v v v (4.3}

(k-3- ° x0 x0 12 j
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k - 3)! ;
+ U= u }32(% ) (4.4)
(k=2-j1°  xo  oxii
k - 3)! : -2
+3 0 u etu ) (0 v (4.5)
(k-2-j1°  xo0 x0 _ xii
.
k - 3)! : >
T e I AR (4.6)
I:k— 1 _ﬂ! ] ) x A
i=1/=1
I
_3)! i =L =1
+6_(k_3]'_u*—1—"[d u )(0%u ) (@ v)(@ v)u (4.7)
(h=1-pt°  xo w0 oxd <l
i<
k-3)! . ; =L 3I 31
N D (@)@ VIO v ) (4.8)
{k—j)!o x 0 x x ! x m ilm
i=1 /=1 m=1
I/=il<m
(k-3)! ] D - A
+6 (0% ) @v)@vidv ) (4.9)
{k—j)!o x 0 x i x ! x m ilm
i=1 /=1 m=1
i<l !:._r'n .
k=3)l a2
+6 u (@vid v)dv )ov )i (4.10)
{k_'.l_j)! 0 x i x [ X m x n LlLmn
i=1j=1m=1 n=1
If=i l=m m=n
where we are using the notation ;,,...,;, to express the product of all the vectors vy, ..., v;, except

Vite s Vig,s for 1 = Jy,..., i, = j distinct from each other and 1 = p = -1, and Vipoiy = 1.
Also, the term (4.3) appears only for j=1,...,k — 3, the terms (4.4) and (4.5) appear only for
j=1,...,k -2, the terms (4.6) and (4.7) appear only forj = 2,...,k — 1 the terms (4.8) and
(4.9) appear only for j=3,..., k and finally, the term (4.10) appears only for j=4,..., k + 1.

Without loss of generality, for this term, we will assume that 4 = j < k — 3 since in this case all
terms in formulas (4.3) - (4.10) make sense and for j € {0, 1, 2, 3} we can do the computation

separately and we obtain an estimate compatible with the case 4 < j < k — 3. By using formula
5, 5+2

(2.3) in Lemma 3 and triangle inequality, for va,..., v E G we have
(k-3)!

™2~ (9 u 33{623 Jv gV I

o E @Y.y, =3lal(k-2) Vs
(k-3-jr °

(k - 3)! i =
+ Ll CHTR RN 73 T4 A
(k_z_f}! =1 ’
k-3) ., by 22 _
+3 N *=*~(0 g §*(*y 3 (@ y Wl 5.
(k-2 - 0 i1 .
(k - 3)! - Ry
+3 e C7D SN CSP (2 B
1 — i 0 =1 [=1 ’ ’
(k—1-j)! =S
(k - 3)! ) > >
+6 Ilu"—l—"(dxuo}(diuo) 7 {dxv ‘){d W )ﬁ r','" 5.5
(k-1-jt ° e
Can . >z > I
+6'(k_3L'IIu"—"(d u) (@*v )@ v v )i -
(k-j]! o x 0O x 7 x I X m iflm &.,s
i=1 [=1 m=1
If=il<=m
Can . >I >I >I
+eE=3y 92y ) @v)OvIOv )y -
(k — )1 o x O _ x i x f xm ilm &,s _I
=Ly mel
=== = |
k=301 K=7 ;i i 2 I
+6 Ll sV MOV MOV MOV )Wy g, s, s
(k+1- e ,-=u=1m=1n=1( V) (9 MOuvn) Vi, nlls's 1]

I ifl=m m=n
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Now, from the algebra property in Lemma 4 and (2.2) in Lemma 3, we obtain

I F{ugd(vi..., vills o2 <
. Muu 1519 w13

< 3lalc’(k - 2) lozu - vl ---lv -
s (k-3 -)! 0 5 x 08,5 x 08,5 145 J 6.s
_l-‘f_3LL" kz;“d 3 vl v I
[k 5 _ :Il H &5 1 &,542 j b ,s+2
(k=3 _
+3 hu 1527119 u ”2 ozu - llv Il - e llv Il
(k-2-)! 0 &5 x 0 &5 x 08,5 1 5,5+1 j 6,5+1
jk 3G —1) k-1-j v I - e v e
U( 1- ﬂ' llu E &5 }lld q( |b 5 ul & 542 Vj 5.5+2
(LEEITITES ||a e vl ey e
+6 k-1- "}' E &, ;“d ylhs Euu &,5 vl & ,5+1 uj &,5+1
(k= 3V(j — 1) = 2) k—j vl - e lv Il
+e (k- llu “DJAI,(_? u )!I 06,5 lJlrl & ,5+2 ‘u; & ,5+2
(k= 3)i(j — )i —2) k—f .
+6 e UL T R SRR
1 (k=3)Y( - 1) -2)( - 3) k1
+6—§l k+1-))1 Nuglls s Nvallg seq === Mvlly sea

Finally, by using lemmas 3 and 4, for 0 <& <8 =<1 and vy,..., v; € G™*"%, with s > 1/2, we
can estimate

"D"'-Fl(Ug}( Vipeons Vj}|l§',s+2

3alc(k - 2)e" k—j+1 (k - 3)!
< :;T”“n”mz Mvallssez - Ivllsse TR=3=PT+
AN k- 123t 6lk-3)
-1k -2-j)! G -2 k-1 (/i — 3) (k- j)! G -4k +1-j)!

By using the fact that (k- 2) < 2? fork e {3, 4,. ....} we obtain
1D/ Fy(ug) (V. .., Vi)lls ss2

36lalc“ 2 e k—jr1 k-3 k-3
< ol sp Mvallssea - Millssea  ; +
k-3 k-3 k-3
+ + + .
-2 i-3 i-4
Since
{:—3 . fc—3 . k‘—3 . k'—3 . k—'3 < k3
g Jj-1 J-2 J-3 i-4
. 1 1,2k k+1
ifwetake C = ———— andA |a|c e 27 llu ll then we have that
Nuglly,s+z 0 1542
S A-lclajf
1D Fi(uo)(va., Vg2 = 5 o Walseallvalls == Iyllg,en (4.11)

We can now do similar computations for the other terms of F(u) and get

) ACf
D7 F (uo)(vi,..., vills,s+2 < 56 Hvills soallvalls son === Mills saa, (4.12)
where A = (2]a| + |b+ 1] + 2|c| + |9a + b| + 3)c"2* Ze-"luoll| T},

Therefore, by Theorem 2 we conclude that the Cauchy problem for the k-abc-equation (1.1) with
initial condition u(x, 0) = ug(x) has a unique solution, which for 0 < & < 1 is a holomorphic
function in the disc D(0,T(1 - &)) valued in G>**>. Moreover, the lifespan T is given by

k. 3kr3

1 1
T = = . where c—e{2|a|+|b+1|+2|c|+|90+b|+3]c2
2¢2AC,  cllu ¥5 ..,

(4.13)

The proof of Theorem 1 is now complete. Q
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